Lecture 27

Is SAT solvable in linear time?

Is SAT solvable in linear time? Unknown, but strongly believed to be no.

Is SAT solvable in linear time? Unknown, but strongly believed to be no.

Is SAT solvable in logspace?

- Is SAT solvable in linear time? Unknown, but strongly believed to be no.
- Is SAT solvable in logspace? Unknown, but strongly believed to be no.

- Is SAT solvable in linear time? Unknown, but strongly believed to be no.
- Is SAT solvable in logspace? Unknown, but strongly believed to be no.
- Is SAT solvable in simultaneous linear time and logspace?

- Is SAT solvable in linear time? Unknown, but strongly believed to be no.
- Is SAT solvable in logspace? Unknown, but strongly believed to be no.
- Is SAT solvable in simultaneous linear time and logspace? No, we will prove that.

- Is SAT solvable in linear time? Unknown, but strongly believed to be no.
- Is SAT solvable in logspace? Unknown, but strongly believed to be no.
- Is SAT solvable in simultaneous linear time and logspace? No, we will prove that.
- **Definition:** For every two functions $S, T : \mathbb{N} \to \mathbb{N}$, $\mathsf{TISP}(T(n), S(n))$ to be the set of

- Is SAT solvable in linear time? Unknown, but strongly believed to be no.
- Is SAT solvable in logspace? Unknown, but strongly believed to be no.
- Is SAT solvable in simultaneous linear time and logspace? No, we will prove that.
- **Definition:** For every two functions $S, T : \mathbb{N} \to \mathbb{N}$, $\mathsf{TISP}(T(n), S(n))$ to be the set of languages decided by a TM M that on every input x takes at most O(T | x |) time and uses

- Is SAT solvable in linear time? Unknown, but strongly believed to be no.
- Is SAT solvable in logspace? Unknown, but strongly believed to be no.
- Is SAT solvable in simultaneous linear time and logspace? No, we will prove that.
- **Definition:** For every two functions $S, T : \mathbb{N} \to \mathbb{N}$, $\mathsf{TISP}(T(n), S(n))$ to be the set of languages decided by a TM M that on every input x takes at most O(T | x |) time and uses at most O(S(|x|)) space.

- Is SAT solvable in linear time? Unknown, but strongly believed to be no.
- Is SAT solvable in logspace? Unknown, but strongly believed to be no.
- Is SAT solvable in simultaneous linear time and logspace? No, we will prove that.
- **Definition:** For every two functions $S, T : \mathbb{N} \to \mathbb{N}$, $\mathsf{TISP}(T(n), S(n))$ to be the set of languages decided by a TM M that on every input x takes at most O(T | x |) time and uses at most O(S(|x|)) space.

Note: Don't confuse TISP(T(n), S(n)) with $DTIME(T(n)) \cap DSPACE(S(n))$.

Theorem: SAT \notin TISP $(n^{1.1}, n^{0.1})$.

Theorem: SAT \notin TISP $(n^{1.1}, n^{0.1})$. **Proof:**

Theorem: $SAT \notin TISP(n^{1.1}, n^{0.1})$. **Proof:** $SAT \in TISP(n^{1.1}, n^{0.1}) \Longrightarrow NTIME(n) \subseteq TISP(n^{1.2}, n^{0.2})$:

Theorem: SAT \notin TISP $(n^{1.1}, n^{0.1})$. **Proof:** SAT \in TISP $(n^{1.1}, n^{0.1}) \Longrightarrow$ NTIME $(n) \subseteq$ TISP $(n^{1.2}, n^{0.2})$:

Let $L \in \mathsf{NTIME}(n)$ and A be a $\mathsf{TISP}(n^{1.1}, n^{0.1})$ algorithm for SAT.

Theorem: SAT \notin TISP $(n^{1.1}, n^{0.1})$. **Proof:** SAT \in TISP $(n^{1.1}, n^{0.1}) \Longrightarrow$ NTIME $(n) \subseteq$ TISP $(n^{1.2}, n^{0.2})$:

> Let $L \in \text{NTIME}(n)$ and A be a $\text{TISP}(n^{1.1}, n^{0.1})$ algorithm for SAT. Then, $TISP(n^{1.2}, n^{0.2})$ algorithm *B* for *L* on input *x*:

Theorem: SAT \notin TISP $(n^{1.1}, n^{0.1})$. **Proof:** SAT \in TISP $(n^{1.1}, n^{0.1}) \Longrightarrow$ NTIME $(n) \subseteq$ TISP $(n^{1.2}, n^{0.2})$:

Let $L \in NTIME(n)$ and A be a $TISP(n^{1.1}, n^{0.1})$ algorithm for SAT.

- Then, **TISP** $(n^{1.2}, n^{0.2})$ algorithm *B* for *L* on input *x*:
- (1) Generates required bits of ϕ_x from x in logspace, where $|\phi_x| = c |x| \log |x|$.

Theorem: SAT \notin TISP $(n^{1.1}, n^{0.1})$.

- **Proof:** SAT \in TISP $(n^{1.1}, n^{0.1}) \Longrightarrow$ NTIME $(n) \subseteq$ TISP $(n^{1.2}, n^{0.2})$: using tighter analysis of Cook Levin's theorem Let $L \in NTIME(n)$ and A be a $TISP(n^{1.1}, n^{0.1})$ algorithm for SAT. Then, $TISP(n^{1.2}, n^{0.2})$ algorithm *B* for *L* on input *x*: (1) Generates required bits of ϕ_x from x in logspace, where $|\phi_x| = c |x| \log |x|$.

Theorem: SAT \notin TISP $(n^{1.1}, n^{0.1})$. **Proof:** SAT \in TISP $(n^{1.1}, n^{0.1}) \Longrightarrow$ NTIME $(n) \subseteq$ TISP $(n^{1.2}, n^{0.2})$:

> Let $L \in NTIME(n)$ and A be a $TISP(n^{1.1}, n^{0.1})$ algorithm for SAT. Then, $TISP(n^{1.2}, n^{0.2})$ algorithm *B* for *L* on input *x*: (1) Generates required bits of ϕ_x from x in logspace, where $|\phi_x| = c |x| \log |x|$. (2) Outputs $A(\phi_{r})$.

using tighter analysis of Cook Levin's theorem

Theorem: SAT \notin TISP $(n^{1.1}, n^{0.1})$. **Proof:** SAT \in TISP $(n^{1.1}, n^{0.1}) \Longrightarrow$ NTIME $(n) \subseteq$ TISP $(n^{1.2}, n^{0.2})$: using tighter analysis of Cook Levín's theorem Let $L \in NTIME(n)$ and A be a $TISP(n^{1.1}, n^{0.1})$ algorithm for SAT. Then, $TISP(n^{1.2}, n^{0.2})$ algorithm *B* for *L* on input *x*: (1) Generates required bits of ϕ_x from x in logspace, where $|\phi_x| = c |x| \log |x|$.

(2) Outputs $A(\phi_{x})$.

Runtime of *B*: $O((cn \log n)^{1.1}) = O(n^{1.2})$

Theorem: SAT \notin TISP $(n^{1.1}, n^{0.1})$.

Proof: SAT \in TISP $(n^{1.1}, n^{0.1}) \Longrightarrow$ NTIME $(n) \subseteq$ TISP $(n^{1.2}, n^{0.2})$: using tighter analysis of Cook Levin's theorem Let $L \in NTIME(n)$ and A be a $TISP(n^{1.1}, n^{0.1})$ algorithm for SAT. Then, $TISP(n^{1.2}, n^{0.2})$ algorithm *B* for *L* on input *x*: (1) Generates required bits of ϕ_x from x in logspace, where $|\phi_x| = c |x| \log |x|$. (2) Outputs $A(\phi_{x})$.

Runtime of *B*: $O((cn \log n)^{1.1}) = O(n^{1.2})$ **Space used by** *B*: $O((cn \log n)^{.1}) = O(n^{0.2})$

Theorem: SAT \notin TISP $(n^{1.1}, n^{0.1})$. **Proof:** SAT \in TISP $(n^{1.1}, n^{0.1}) \Longrightarrow$ NTIME $(n) \subseteq$ TISP $(n^{1.2}, n^{0.2})$: using tighter analysis Let $L \in \text{NTIME}(n)$ and A be a $\text{TISP}(n^{1.1}, n^{0.1})$ algorithm for SAT. of Cook Levín's theorem Then, **TISP** $(n^{1.2}, n^{0.2})$ algorithm *B* for *L* on input *x*: (1) Generates required bits of ϕ_x from x in logspace, where $|\phi_x| = c |x| \log |x|$. (2) Outputs $A(\phi_r)$. Runtime of *B*: $O((cn \log n)^{1.1}) = O(n^{1.2})$ **Space used by** *B*: $O((cn \log n)^{.1}) = O(n^{0.2})$

Theorem: SAT \notin TISP $(n^{1.1}, n^{0.1})$. **Proof:** SAT \in TISP $(n^{1.1}, n^{0.1}) \Longrightarrow$ NTIME $(n) \subseteq$ TISP $(n^{1.2}, n^{0.2})$: using tighter analysis Let $L \in \text{NTIME}(n)$ and A be a $\text{TISP}(n^{1.1}, n^{0.1})$ algorithm for SAT. of Cook Levín's theorem Then, **TISP** $(n^{1.2}, n^{0.2})$ algorithm *B* for *L* on input *x*: (1) Generates required bits of ϕ_x from x in logspace, where $|\phi_x| = c |x| \log |x|$. (2) Outputs $A(\phi_r)$. Runtime of *B*: $O((cn \log n)^{1.1}) = O(n^{1.2})$ **Space used by** *B*: $O((cn \log n)^{.1}) = O(n^{0.2})$ $\mathsf{NTIME}(n) \nsubseteq \mathsf{TISP}(n^{1.2}, n^{0.2}) \implies \mathsf{SAT} \notin \mathsf{TISP}(n^{1.1}, n^{0.1})$

Theorem: SAT \notin TISP $(n^{1.1}, n^{0.1})$. **Proof:** SAT \in TISP $(n^{1.1}, n^{0.1}) \Longrightarrow$ NTIME $(n) \subseteq$ TISP $(n^{1.2}, n^{0.2})$: using tighter analysis Let $L \in \text{NTIME}(n)$ and A be a $\text{TISP}(n^{1.1}, n^{0.1})$ algorithm for SAT. of Cook Levín's theorem Then, **TISP** $(n^{1.2}, n^{0.2})$ algorithm *B* for *L* on input *x*: (1) Generates required bits of ϕ_x from x in logspace, where $|\phi_x| = c |x| \log |x|$. (2) Outputs $A(\phi_r)$. Runtime of *B*: $O((cn \log n)^{1.1}) = O(n^{1.2})$ **Space used by** *B*: $O((cn \log n)^{.1}) = O(n^{0.2})$ $\mathsf{NTIME}(n) \nsubseteq \mathsf{TISP}(n^{1.2}, n^{0.2}) \implies \mathsf{SAT} \notin \mathsf{TISP}(n^{1.1}, n^{0.1})$

Theorem: SAT \notin TISP $(n^{1.1}, n^{0.1})$. **Proof:** SAT \in TISP $(n^{1.1}, n^{0.1}) \Longrightarrow$ NTIME $(n) \subseteq$ TISP $(n^{1.2}, n^{0.2})$: using tighter analysis Let $L \in \text{NTIME}(n)$ and A be a $\text{TISP}(n^{1.1}, n^{0.1})$ algorithm for SAT. of Cook Levín's theorem Then, **TISP** $(n^{1.2}, n^{0.2})$ algorithm *B* for *L* on input *x*: (1) Generates required bits of ϕ_x from x in logspace, where $|\phi_x| = c |x| \log |x|$. (2) Outputs $A(\phi_r)$. Runtime of *B*: $O((cn \log n)^{1.1}) = O(n^{1.2})$ **Space used by** *B*: $O((cn \log n)^{.1}) = O(n^{0.2})$ $\mathsf{NTIME}(n) \nsubseteq \mathsf{TISP}(n^{1.2}, n^{0.2}) \implies \mathsf{SAT} \notin \mathsf{TISP}(n^{1.1}, n^{0.1})$

Will show this.

Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .

Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) . **Proof:**

Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .

Proof: Let $L \in TISP(n^{12}, n^2)$ and M be a TM that decides L using n^{12} time and n^2 space.

Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .

Let $G_{M,x}$ denote the configuration graph of M on x.

- **Proof:** Let $L \in TISP(n^{12}, n^2)$ and M be a TM that decides L using n^{12} time and n^2 space.

Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .

Let $G_{M,x}$ denote the configuration graph of M on x.

 $x \in L \iff \exists$ a path of length at most

- **Proof:** Let $L \in TISP(n^{12}, n^2)$ and M be a TM that decides L using n^{12} time and n^2 space.
 - from C_{start} to C_{accept}

Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .

Let $G_{M,x}$ denote the configuration graph of M on x.

- **Proof:** Let $L \in TISP(n^{12}, n^2)$ and M be a TM that decides L using n^{12} time and n^2 space.
 - $x \in L \iff \exists$ a path of length at most n^{12} from C_{start} to C_{accent}

- Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .
- **Proof:** Let $L \in TISP(n^{12}, n^2)$ and M be a TM that decides L using n^{12} time and n^2 space.
- Let $G_{M,x}$ denote the configuration graph of M on x.
 - $x \in L \iff \exists$ a path of length at most n^{12} from C_{start} to C_{accept}
 - $x \in L \iff \exists C' \text{ s.t. } \exists a \text{ path of length at most } n^{12}/2 \text{ from } C_{start} \text{ to } C'$ and from C' to C_{accept}

- Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .
- **Proof:** Let $L \in TISP(n^{12}, n^2)$ and M be a TM that decides L using n^{12} time and n^2 space.
- Let $G_{M,x}$ denote the configuration graph of M on x.
 - $x \in L \iff \exists a \text{ path of length at most } n^{12} \text{ from } C_{start} \text{ to } C_{accept}$
 - $x \in L \iff \exists C' \text{ s.t. } \exists a \text{ path of length at most } n^{12}/2 \text{ from } C_{start} \text{ to } C'$ and from C' to C_{accept}
 - $x \in L \iff \exists C', C'' \text{ s.t. } \exists a \text{ path of length at most } n^{12}/3 \text{ from } C_{start} \text{ to } C',$ from C' to C'' and from C'' to C_{accept}

Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .

• • •

- **Proof:** Let $L \in TISP(n^{12}, n^2)$ and M be a TM that decides L using n^{12} time and n^2 space.
- Let $G_{M,x}$ denote the configuration graph of M on x.
 - $x \in L \iff \exists a \text{ path of length at most } n^{12} \text{ from } C_{start} \text{ to } C_{accept}$
 - $x \in L \iff \exists C' \text{ s.t. } \exists a \text{ path of length at most } n^{12}/2 \text{ from } C_{start} \text{ to } C'$ and from C' to C_{accept}
 - $x \in L \iff \exists C', C'' \text{ s.t. } \exists a \text{ path of length at most } n^{12}/3 \text{ from } C_{start} \text{ to } C',$ from C' to C'' and from C'' to C_{accept}

Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .

Let $G_{M,x}$ denote the configuration graph of M on x.

Proof: Let $L \in TISP(n^{12}, n^2)$ and M be a TM that decides L using n^{12} time and n^2 space.

Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .

Let $G_{M,x}$ denote the configuration graph of M on x. (Include x in configs as well.)

- **Proof:** Let $L \in TISP(n^{12}, n^2)$ and M be a TM that decides L using n^{12} time and n^2 space.

Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .

Let $G_{M,x}$ denote the configuration graph of M on x. (include x in configs as well.)

Then, $x \in L$ iff \exists a sequence of configurations $C_0, C_1, \ldots, C_{n^6}$ such that

- **Proof:** Let $L \in TISP(n^{12}, n^2)$ and M be a TM that decides L using n^{12} time and n^2 space.

Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .

Let $G_{M,x}$ denote the configuration graph of M on x. (include x in configs as well.) Then, $x \in L$ iff \exists a sequence of configurations $C_0, C_1, \ldots, C_{n^6}$ such that (1) $C_0 = C_{start}$ and $C_{n^6} = C_{accept}$.

- **Proof:** Let $L \in TISP(n^{12}, n^2)$ and M be a TM that decides L using n^{12} time and n^2 space.

Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .

Let $G_{M,x}$ denote the configuration graph of M on x. (Include x in configs as well.) Then, $x \in L$ iff \exists a sequence of configurations $C_0, C_1, \ldots, C_{n^6}$ such that (1) $C_0 = C_{start}$ and $C_{n^6} = C_{accept}$. (2) $\forall i$, \exists a path of length at most from C_i to C_{i+1} .

- **Proof:** Let $L \in TISP(n^{12}, n^2)$ and M be a TM that decides L using n^{12} time and n^2 space.

Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .

Let $G_{M,x}$ denote the configuration graph of M on x. (Include x in configs as well.) Then, $x \in L$ iff \exists a sequence of configurations $C_0, C_1, \ldots, C_{n^6}$ such that (1) $C_0 = C_{start}$ and $C_{n^6} = C_{accept}$. (2) $\forall i$, \exists a path of length at most n^6 from C_i to C_{i+1} .

- **Proof:** Let $L \in TISP(n^{12}, n^2)$ and M be a TM that decides L using n^{12} time and n^2 space.

Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .

Let $G_{M,x}$ denote the configuration graph of M on x. (Include x in configs as well.) Then, $x \in L$ iff \exists a sequence of configurations $C_0, C_1, \ldots, C_{n^6}$ such that (1) $C_0 = C_{start}$ and $C_{n^6} = C_{accept}$. (2) $\forall i$, \exists a path of length at most n^6 from C_i to C_{i+1} .

 Σ_2 **TIME** (n^8) algorithm for *L* on input *x*:

- **Proof:** Let $L \in TISP(n^{12}, n^2)$ and M be a TM that decides L using n^{12} time and n^2 space.

Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .

Let $G_{M,x}$ denote the configuration graph of M on x. (include x in configs as well.) Then, $x \in L$ iff \exists a sequence of configurations $C_0, C_1, \ldots, C_{n^6}$ such that (1) $C_0 = C_{start}$ and $C_{n^6} = C_{accept}$. (2) $\forall i$, \exists a path of length at most n^6 from C_i to C_{i+1} .

 Σ_2 **TIME** (n^8) algorithm for *L* on input *x*: (1) Generates $C_0, C_1, \ldots, C_{n^6}$ many configs. with \exists state.

- **Proof:** Let $L \in TISP(n^{12}, n^2)$ and M be a TM that decides L using n^{12} time and n^2 space.

Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .

Let $G_{M,x}$ denote the configuration graph of M on x. (include x in configs as well.) Then, $x \in L$ iff \exists a sequence of configurations $C_0, C_1, \ldots, C_{n^6}$ such that (1) $C_0 = C_{start}$ and $C_{n^6} = C_{accept}$. (2) $\forall i$, \exists a path of length at most n^6 from C_i to C_{i+1} .

 Σ_2 **TIME** (n^8) algorithm for *L* on input *x*: (1) Generates $C_0, C_1, \ldots, C_{n^6}$ many configs. with \exists state. (2) Generates an $i \in [0, n^6 - 1]$ with \forall state.

- **Proof:** Let $L \in TISP(n^{12}, n^2)$ and M be a TM that decides L using n^{12} time and n^2 space.

Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .

Let $G_{M,x}$ denote the configuration graph of M on x. (include x in configs as well.) Then, $x \in L$ iff \exists a sequence of configurations $C_0, C_1, \ldots, C_{n^6}$ such that (1) $C_0 = C_{start}$ and $C_{n^6} = C_{accept}$. (2) $\forall i$, \exists a path of length at most n^6 from C_i to C_{i+1} .

 Σ_2 **TIME** (n^8) algorithm for *L* on input *x*: (1) Generates $C_0, C_1, \ldots, C_{n^6}$ many configs. with \exists state. (2) Generates an $i \in [0, n^6 - 1]$ with \forall state.

- **Proof:** Let $L \in TISP(n^{12}, n^2)$ and M be a TM that decides L using n^{12} time and n^2 space.

(3) Output $1 \iff C_0 = C_{start}$, $C_{n^6} = C_{accept}$ and C_{i+1} is reachable from C_i within n^6 steps.

Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .

Let $G_{M,x}$ denote the configuration graph of M on x. (include x in configs as well.) Then, $x \in L$ iff \exists a sequence of configurations $C_0, C_1, \ldots, C_{n^6}$ such that (1) $C_0 = C_{start}$ and $C_{n^6} = C_{accept}$. (2) $\forall i$, \exists a path of length at most n^6 from C_i to C_{i+1} .

 Σ_2 **TIME** (n^8) algorithm for *L* on input *x*: (1) Generates $C_0, C_1, \ldots, C_{n^6}$ many configs. with \exists state. (2) Generates an $i \in [0, n^6 - 1]$ with \forall state.

- **Proof:** Let $L \in TISP(n^{12}, n^2)$ and M be a TM that decides L using n^{12} time and n^2 space.

- Takes $O(n^8)$ time.
- (3) Output $1 \iff C_0 = C_{start}$, $C_{n^6} = C_{accept}$ and C_{i+1} is reachable from C_i within n^6 steps.

Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .

Let $G_{M,x}$ denote the configuration graph of M on x. (include x in configs as well.) Then, $x \in L$ iff \exists a sequence of configurations $C_0, C_1, \ldots, C_{n^6}$ such that (1) $C_0 = C_{start}$ and $C_{n^6} = C_{accept}$. (2) $\forall i$, \exists a path of length at most n^6 from

 Σ_2 **TIME** (n^8) algorithm for *L* on input *x*: (1) Generates $C_0, C_1, \ldots, C_{n^6}$ many configs. with \exists state. (2) Generates an $i \in [0, n^6 - 1]$ with \forall state.

- **Proof:** Let $L \in TISP(n^{12}, n^2)$ and M be a TM that decides L using n^{12} time and n^2 space.

m
$$C_i$$
 to C_{i+1} .

Takes $O(n^8)$ time.

(3) Output $1 \iff C_0 = C_{start}$, $C_{n^6} = C_{accept}$ and C_{i+1} is reachable from C_i within n^6 steps.

Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .

Let $G_{M,x}$ denote the configuration graph of M on x. (include x in configs as well.) Then, $x \in L$ iff \exists a sequence of configurations $C_0, C_1, \ldots, C_{n^6}$ such that (1) $C_0 = C_{start}$ and $C_{n^6} = C_{accept}$. (2) $\forall i$, \exists a path of length at most n^6 from

 Σ_2 **TIME** (n^8) algorithm for *L* on input *x*: (1) Generates $C_0, C_1, \ldots, C_{n^6}$ many configs. with \exists state. (2) Generates an $i \in [0, n^6 - 1]$ with \forall state. (3) Output $1 \iff C_0 = C_{start}$, $C_{n^6} = C_{accept}$ and C_{i+1} is reachable from C_i within n^6 steps.

- **Proof:** Let $L \in TISP(n^{12}, n^2)$ and M be a TM that decides L using n^{12} time and n^2 space.

m
$$C_i$$
 to C_{i+1} .

Takes $O(n^8)$ time.

Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .

Let $G_{M,x}$ denote the configuration graph of M on x. (include x in configs as well.) Then, $x \in L$ iff \exists a sequence of configurations $C_0, C_1, \ldots, C_{n^6}$ such that (1) $C_0 = C_{start}$ and $C_{n^6} = C_{accept}$. (2) $\forall i$, \exists a path of length at most n^6 from

 Σ_2 **TIME** (n^8) algorithm for *L* on input *x*: (1) Generates $C_0, C_1, \ldots, C_{n^6}$ many configs. with \exists state. (2) Generates an $i \in [0, n^6 - 1]$ with \forall state. (3) Output $1 \iff C_0 = C_{start}$, $C_{n^6} = C_{accept}$ and C_{i+1} is reachable from C_i within n^6 steps.

- **Proof:** Let $L \in TISP(n^{12}, n^2)$ and M be a TM that decides L using n^{12} time and n^2 space.

m
$$C_i$$
 to C_{i+1} .

Takes $O(n^8)$ time.

Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}$, $n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$).

Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}, n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$). Proof:

Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}$, $n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$).

Proof: $coNTIME(n) \subseteq DTIME(n^{1.2})$:

Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}$, $n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$).

Proof: $coNTIME(n) \subseteq DTIME(n^{1.2})$:

 $L \in \operatorname{coNTIME}(n)$

Claim 2: If $NTIME(n) \subseteq TISP(n^{1.2}, n^{0.2})$, then $\Sigma_2 TIME(n^8) \subseteq NTIME(n^{9.6})$.

Proof: coNTIME(n) \subseteq DTIME($n^{1.2}$):

 $L \in \operatorname{coNTIME}(n) \Longrightarrow \overline{L} \in \operatorname{NTIME}(n)$

Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}, n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$).

Proof: coNTIME(n) \subseteq DTIME($n^{1.2}$):

 $L \in \text{coNTIME}(n) \Longrightarrow \overline{L} \in \text{NTIME}(n) \Longrightarrow \overline{L} \in \text{TISP}(n^{1.2}, n^{.2})$

Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}$, $n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$).

Proof: coNTIME(n) \subseteq DTIME($n^{1.2}$):

 $L \in \text{contime}(n) \Longrightarrow \overline{L} \in \text{ntime}(n) \Longrightarrow \overline{L} \in \text{tisp}(n^{1.2}, n^{.2}) \dots$

Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}$, $n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$).

Proof: coNTIME(n) \subseteq DTIME($n^{1.2}$):

• • •

 $L \in \text{contime}(n) \Longrightarrow \overline{L} \in \text{ntime}(n) \Longrightarrow \overline{L} \in \text{tisp}(n^{1.2}, n^{.2}) \dots$

Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}$, $n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$).

Proof: coNTIME(n) \subseteq DTIME($n^{1.2}$):

 $\dots \implies \overline{L} \in \mathsf{DTIME}(n^{1.2})$

- $L \in \text{coNTIME}(n) \Longrightarrow \overline{L} \in \text{NTIME}(n) \Longrightarrow \overline{L} \in \text{TISP}(n^{1.2}, n^{.2}) \dots$

Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}$, $n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$).

Proof: coNTIME(n) \subseteq DTIME($n^{1.2}$):

- $L \in \text{coNTIME}(n) \Longrightarrow \overline{L} \in \text{NTIME}(n) \Longrightarrow \overline{L} \in \text{TISP}(n^{1.2}, n^{.2}) \dots$ $\dots \Longrightarrow \overline{L} \in \mathsf{DTIME}(n^{1.2}) \Longrightarrow L \in \mathsf{DTIME}(n^{1.2})$

Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}$, $n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$).

Proof: coNTIME(n) \subseteq DTIME($n^{1.2}$):

Let *L* be a language in $\Sigma_2 \text{TIME}(n^8)$.

- $L \in \text{coNTIME}(n) \Longrightarrow \overline{L} \in \text{NTIME}(n) \Longrightarrow \overline{L} \in \text{TISP}(n^{1.2}, n^{.2}) \dots$ $\dots \Longrightarrow \overline{L} \in \mathsf{DTIME}(n^{1.2}) \Longrightarrow L \in \mathsf{DTIME}(n^{1.2})$

Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}$, $n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$).

Proof: coNTIME(n) \subseteq DTIME($n^{1.2}$):

Let L be a language in $\Sigma_2 \text{TIME}(n^8)$. Then,

- $L \in \text{coNTIME}(n) \Longrightarrow \overline{L} \in \text{NTIME}(n) \Longrightarrow \overline{L} \in \text{TISP}(n^{1.2}, n^{.2}) \dots$ $\dots \implies \overline{L} \in \mathsf{DTIME}(n^{1.2}) \implies L \in \mathsf{DTIME}(n^{1.2})$

Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}, n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$).

Proof: coNTIME(n) \subseteq DTIME($n^{1.2}$):

Let *L* be a language in $\Sigma_2 \text{TIME}(n^8)$. Then, $x \in L \iff \exists u_1 \forall u_2 M(x, u_1, u_2) = 1$

- $L \in \text{coNTIME}(n) \Longrightarrow \overline{L} \in \text{NTIME}(n) \Longrightarrow \overline{L} \in \text{TISP}(n^{1.2}, n^{.2}) \dots$ $\dots \Longrightarrow \overline{L} \in \mathsf{DTIME}(n^{1.2}) \Longrightarrow L \in \mathsf{DTIME}(n^{1.2})$

Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}, n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$).

Proof: coNTIME(n) \subseteq DTIME($n^{1.2}$):

Let *L* be a language in $\Sigma_2 \text{TIME}(n^8)$. Then,

 $x \in L \iff \exists u_1 \forall u_2 M(x, u_1, u_2) = 1$

where M is a DTM running in time $O(n^8)$.

- $L \in \text{coNTIME}(n) \Longrightarrow \overline{L} \in \text{NTIME}(n) \Longrightarrow \overline{L} \in \text{TISP}(n^{1.2}, n^{.2}) \dots$ $\dots \Longrightarrow \overline{L} \in \mathsf{DTIME}(n^{1.2}) \Longrightarrow L \in \mathsf{DTIME}(n^{1.2})$

Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}, n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$).

Proof: coNTIME(n) \subseteq DTIME($n^{1.2}$):

Let *L* be a language in $\Sigma_2 \text{TIME}(n^8)$. Then,

 $x \in L \iff \exists u_1 \forall u_2 M(x, u_1, u_2) = 1$

where M is a DTM running in time $O(n^8)$.

Define a related language L' as

- $L \in \text{coNTIME}(n) \Longrightarrow \overline{L} \in \text{NTIME}(n) \Longrightarrow \overline{L} \in \text{TISP}(n^{1.2}, n^{.2}) \dots$ $\dots \Longrightarrow \overline{L} \in \mathsf{DTIME}(n^{1.2}) \Longrightarrow L \in \mathsf{DTIME}(n^{1.2})$

Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}, n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$).

Proof: coNTIME(n) \subseteq DTIME($n^{1.2}$):

Let L be a language in $\Sigma_2 \text{TIME}(n^8)$. Then,

 $x \in L \iff \exists u_1 \forall u_2 M(x, u_1, u_2) = 1$

where M is a DTM running in time $O(n^8)$.

Define a related language L' as

 $(x, u_1) \in L' \iff \forall u_2 M(x, u_1, u_2) = 1$

- $L \in \text{coNTIME}(n) \Longrightarrow \overline{L} \in \text{NTIME}(n) \Longrightarrow \overline{L} \in \text{TISP}(n^{1.2}, n^{.2}) \dots$ $\dots \implies \overline{L} \in \mathsf{DTIME}(n^{1.2}) \implies L \in \mathsf{DTIME}(n^{1.2})$

Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}, n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$).

Proof: coNTIME(n) \subseteq DTIME($n^{1.2}$):

Let L be a language in $\Sigma_2 \text{TIME}(n^8)$. Then,

 $x \in L \iff \exists u_1 \forall u_2 M(x, u_1, u_2) = 1$

where M is a DTM running in time $O(n^8)$.

Define a related language L' as

 $(x, u_1) \in L' \iff \forall u_2 M(x, u_1, u_2) = 1$

 $L' \in \text{coNTIME}(n^8)$

- $L \in \text{coNTIME}(n) \Longrightarrow \overline{L} \in \text{NTIME}(n) \Longrightarrow \overline{L} \in \text{TISP}(n^{1.2}, n^{.2}) \dots$ $\dots \implies \overline{L} \in \mathsf{DTIME}(n^{1.2}) \implies L \in \mathsf{DTIME}(n^{1.2})$

Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}, n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$).

Proof: coNTIME(n) \subseteq DTIME($n^{1.2}$):

Let L be a language in $\Sigma_2 \text{TIME}(n^8)$. Then,

 $x \in L \iff \exists u_1 \forall u_2 M(x, u_1, u_2) = 1$

where M is a DTM running in time $O(n^8)$.

Define a related language L' as

 $(x, u_1) \in L' \iff \forall u_2 M(x, u_1, u_2) = 1$

 $L' \in \text{coNTIME}(n^8) \subseteq \text{DTIME}((n^8)^{1.2})$

- $L \in \text{coNTIME}(n) \Longrightarrow \overline{L} \in \text{NTIME}(n) \Longrightarrow \overline{L} \in \text{TISP}(n^{1.2}, n^{.2}) \dots$ $\dots \implies \overline{L} \in \mathsf{DTIME}(n^{1.2}) \implies L \in \mathsf{DTIME}(n^{1.2})$

Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}, n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$).

Proof: coNTIME(n) \subseteq DTIME($n^{1.2}$):

Let L be a language in $\Sigma_2 \text{TIME}(n^8)$. Then,

 $x \in L \iff \exists u_1 \forall u_2 M(x, u_1, u_2) = 1$

where M is a DTM running in time $O(n^8)$.

Define a related language L' as

 $(x, u_1) \in L' \iff \forall u_2 M(x, u_1, u_2) = 1$

 $L' \in \text{coNTIME}(n^8) \subseteq \text{DTIME}((n^8)^{1.2}) = \text{DTIME}(n^{9.6})$

- $L \in \text{coNTIME}(n) \Longrightarrow \overline{L} \in \text{NTIME}(n) \Longrightarrow \overline{L} \in \text{TISP}(n^{1.2}, n^{.2}) \dots$ $\dots \implies \overline{L} \in \mathsf{DTIME}(n^{1.2}) \implies L \in \mathsf{DTIME}(n^{1.2})$

Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}, n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$).

Proof: coNTIME(n) \subseteq DTIME($n^{1.2}$):

Let L be a language in $\Sigma_2 \text{TIME}(n^8)$. Then,

 $x \in L \iff \exists u_1 \forall u_2 M(x, u_1, u_2) = 1$

where M is a DTM running in time $O(n^8)$.

Define a related language L' as

 $(x, u_1) \in L' \iff \forall u_2 M(x, u_1, u_2) = 1$

 $L' \in \text{coNTIME}(n^8) \subseteq \text{DTIME}((n^8)^{1.2}) = \text{DTIME}(n^{9.6}) \checkmark$

- $L \in \text{coNTIME}(n) \Longrightarrow \overline{L} \in \text{NTIME}(n) \Longrightarrow \overline{L} \in \text{TISP}(n^{1.2}, n^{.2}) \dots$ $\dots \implies \overline{L} \in \mathsf{DTIME}(n^{1.2}) \implies L \in \mathsf{DTIME}(n^{1.2})$

from padding argument.
Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}, n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$).

Proof: coNTIME(n) \subseteq DTIME($n^{1.2}$):

Let L be a language in $\Sigma_2 \text{TIME}(n^8)$. Then,

 $x \in L \iff \exists u_1 \forall u_2 M(x, u_1, u_2) = 1$

where M is a DTM running in time $O(n^8)$.

Define a related language L' as

 $(x, u_1) \in L' \iff \forall u_2 M(x, u_1, u_2) = 1$

 $L' \in \text{coNTIME}(n^8) \subseteq \text{DTIME}((n^8)^{1.2}) = \text{DTIME}(n^{9.6}) \checkmark$

- $L \in \text{coNTIME}(n) \Longrightarrow \overline{L} \in \text{NTIME}(n) \Longrightarrow \overline{L} \in \text{TISP}(n^{1.2}, n^{.2}) \dots$ $\dots \implies \overline{L} \in \mathsf{DTIME}(n^{1.2}) \implies L \in \mathsf{DTIME}(n^{1.2})$

from padding argument.

• • •

Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}, n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$). Proof: ...

Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}$, $n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$). **Proof:** ... Let M' be L''s $O(n^{9.6})$ time deterministic TM.

Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}$, $n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$). **Proof:** ... Let M' be L''s $O(n^{9.6})$ time deterministic TM.

Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}$, $n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$).

Proof: ... Let M' be L''s $O(n^{9.6})$ time deterministic TM.

Plugging appropriately:

 $x \in L \iff \exists u_1 \forall u_2 M(x, u_1, u_2) = 1$

Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}$, $n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$).

Proof: ... Let M' be L''s $O(n^{9.6})$ time deterministic TM.

Plugging appropriately:

 $x \in L \iff \exists u_1 \forall u_2 M(x, u_1, u_2) = 1$

 $\iff \exists u_1 \text{ such that } \forall u_2 M(x, u_1, u_2) = 1$

Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}$, $n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$). **Proof:** ... Let M' be L''s $O(n^{9.6})$ time deterministic TM.

- $x \in L \iff \exists u_1 \forall u_2 M(x, u_1, u_2) = 1$
 - $\iff \exists u_1 \text{ such that } \forall u_2 M(x, u_1, u_2) = 1$ $\iff \exists u_1 \text{ such that } (x, u_1) \in L'$

Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}$, $n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$). **Proof:** ... Let M' be L''s $O(n^{9.6})$ time deterministic TM.

- $x \in L \iff \exists u_1 \forall u_2 M(x, u_1, u_2) = 1$ $\iff \exists u_1 \text{ such that } \forall u_2 M(x, u_1, u_2) = 1$ $\iff \exists u_1 \text{ such that } (x, u_1) \in L'$

 - $\iff \exists u_1 \text{ such that } M'(x, u_1) = 1$

Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}$, $n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$). **Proof:** ... Let M' be L''s $O(n^{9.6})$ time deterministic TM.

- $x \in L \iff \exists u_1 \forall u_2 M(x, u_1, u_2) = 1$ $\iff \exists u_1 \text{ such that } \forall u_2 M(x, u_1, u_2) = 1$ $\iff \exists u_1 \text{ such that } (x, u_1) \in L'$ $\iff \exists u_1 \text{ such that } M'(x, u_1) = 1$
- - $\iff \exists u_1 M'(x, u_1) = 1$

Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}$, $n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$). **Proof:** ... Let M' be L''s $O(n^{9.6})$ time deterministic TM.

Plugging appropriately:

 $x \in L \iff \exists u_1 \forall u_2 M(x, u_1, u_2) = 1$

 $\iff \exists u_1 \text{ such that } \forall u_2 M(x, u_1, u_2) = 1$

 $\iff \exists u_1 \text{ such that } (x, u_1) \in L'$

 $\iff \exists u_1 \text{ such that } M'(x, u_1) = 1$

 $\iff \exists u_1 M'(x, u_1) = 1$

Thus, $L \in \text{NTIME}(n^{9.6})$.

Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}$, $n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$). **Proof:** ... Let M' be L''s $O(n^{9.6})$ time deterministic TM.

Plugging appropriately:

 $x \in L \iff \exists u_1 \forall u_2 M(x, u_1, u_2) = 1$

 $\iff \exists u_1 \text{ such that } \forall u_2 M(x, u_1, u_2) = 1$

 $\iff \exists u_1 \text{ such that } (x, u_1) \in L'$

 $\iff \exists u_1 \text{ such that } M'(x, u_1) = 1$

 $\iff \exists u_1 M'(x, u_1) = 1$

Thus, $L \in \text{NTIME}(n^{9.6})$.

- We want to show $SAT \notin TISP(n^{1.1}, n^{0.1})$.

- We want to show $SAT \notin TISP(n^{1.1}, n^{0.1})$.
- Showing NTIME(n) $\not\subseteq$ TISP($n^{1.2}$, $n^{0.2}$) is sufficient.

- We want to show $SAT \notin TISP(n^{1.1}, n^{0.1})$.
- Showing NTIME(n) $\not\subseteq$ TISP($n^{1.2}$, $n^{0.2}$) is sufficient.
- Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .

- We want to show $SAT \notin TISP(n^{1.1}, n^{0.1})$.
- Showing NTIME(n) $\not\subseteq$ TISP($n^{1.2}$, $n^{0.2}$) is sufficient.
- Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .
- Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}$, $n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$).

Summary:

- We want to show $SAT \notin TISP(n^{1.1}, n^{0.1})$.
- Showing NTIME(n) $\not\subseteq$ TISP($n^{1.2}$, $n^{0.2}$) is sufficient.
- Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .
- Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}, n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$).

Putting everything together:

Summary:

- We want to show $SAT \notin TISP(n^{1.1}, n^{0.1})$.
- Showing NTIME(n) $\not\subseteq$ TISP($n^{1.2}$, $n^{0.2}$) is sufficient.
- Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .
- Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}, n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$).

Putting everything together:

Suppose NTIME(n) \subseteq TISP($n^{1.2}, n^{0.2}$). Then,

Summary:

- We want to show $SAT \notin TISP(n^{1.1}, n^{0.1})$.
- Showing NTIME(n) $\not\subseteq$ TISP($n^{1.2}$, $n^{0.2}$) is sufficient.
- Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .
- Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}, n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$).

Putting everything together:

Suppose NTIME(n) \subseteq TISP($n^{1.2}, n^{0.2}$). Then,

NTIME(n^{10}) \subseteq TISP(n^{12} , n^2)

Summary:

- We want to show $SAT \notin TISP(n^{1.1}, n^{0.1})$.
- Showing NTIME(n) $\not\subseteq$ TISP($n^{1.2}$, $n^{0.2}$) is sufficient.
- Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .
- Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}, n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$).

Putting everything together:

Suppose NTIME(n) \subseteq TISP($n^{1.2}, n^{0.2}$). Then,

NTIME(n^{10}) \subseteq TISP(n^{12} , n^2)

from padding argument

Summary:

- We want to show $SAT \notin TISP(n^{1.1}, n^{0.1})$.
- Showing NTIME(n) $\not\subseteq$ TISP($n^{1.2}$, $n^{0.2}$) is sufficient.
- Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .
- Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}, n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$).

Putting everything together:

Suppose NTIME(n) \subseteq TISP($n^{1.2}, n^{0.2}$). Then,

NTIME $(n^{10}) \subseteq \text{TISP}(n^{12}, n^2) \subseteq \Sigma_2 \text{TIME}(n^8)$

from padding argument

Summary:

- We want to show $SAT \notin TISP(n^{1.1}, n^{0.1})$.
- Showing NTIME(n) $\not\subseteq$ TISP($n^{1.2}$, $n^{0.2}$) is sufficient.
- Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .
- Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}, n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$).

Putting everything together:

Suppose NTIME(n) \subseteq TISP($n^{1.2}, n^{0.2}$). Then,

NTIME $(n^{10}) \subseteq \text{TISP}(n^{12}, n^2) \subseteq \Sigma_2 \text{TIME}(n^8)$

from padding argument

Claim 1

Summary:

- We want to show $SAT \notin TISP(n^{1.1}, n^{0.1})$.
- Showing NTIME(n) $\not\subseteq$ TISP($n^{1.2}, n^{0.2}$) is sufficient.
- Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .
- Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}, n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$).

Putting everything together:

Suppose NTIME(n) \subseteq TISP($n^{1.2}, n^{0.2}$). Then,

from padding argument

 $NTIME(n^{10}) \subseteq TISP(n^{12}, n^2) \subseteq \Sigma_2 TIME(n^8) \subseteq NTIME(n^{9.6})$ Claim 1

Summary:

- We want to show $SAT \notin TISP(n^{1.1}, n^{0.1})$.
- Showing NTIME(n) $\not\subseteq$ TISP($n^{1.2}, n^{0.2}$) is sufficient.
- Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .
- Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}, n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$).

Putting everything together:

Suppose NTIME(n) \subseteq TISP($n^{1.2}, n^{0.2}$). Then,

from padding argument

Summary:

- We want to show $SAT \notin TISP(n^{1.1}, n^{0.1})$.
- Showing NTIME(n) $\not\subseteq$ TISP($n^{1.2}$, $n^{0.2}$) is sufficient.
- Claim 1: TISP $(n^{12}, n^2) \subseteq \Sigma_2$ TIME (n^8) .
- Claim 2: If NTIME(n) \subseteq TISP($n^{1.2}, n^{0.2}$), then Σ_2 TIME(n^8) \subseteq NTIME($n^{9.6}$). breaks nondeterministic time hierarchy theorem Suppose NTIME(n) \subseteq TISP($n^{1.2}$, $n^{0.2}$). Then, $\mathsf{NTIME}(n^{10}) \subseteq \mathsf{TISP}(n^{12}, n^2) \subseteq \Sigma_2 \mathsf{TIME}(n^8) \subseteq \mathsf{NTIME}(n^{9.6})$ Claim 2 from padding argument Claim 1

Putting everything together:

